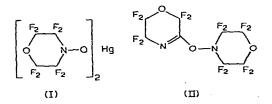
Preliminary communication

Displacement of fluorine from perfluoroimines by bis[bis(trifluoromethyl)aminooxy] mercury or N,N-bis(trifluoromethyl)hydroxylaminecaesium fluoride

R.E. BANKS, D.R. CHOUDHURY, R.N. HASZELDINE and C. OPPENHEIM

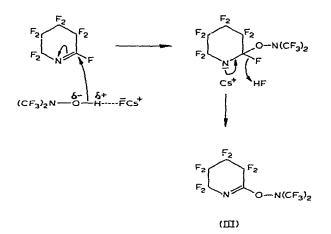

Chemistry Department, The University of Manchester Institute of Science and Technology, Manchester M60 1QD (Great Britain)

(Received July 24th, 1972)

SUMMARY

The mercurial $[(CF_3)_2 N-O]_2$ Hg reacts with the perfluoroimine $CF_3-N=CF_2$ to give the mercurial $\{[(CF_3)_2 N-O-CF_2](CF_3)N\}_2$ Hg, thermal decomposition of which affords the compounds $CF_3-N=C[O-N(CF_3)_2]-O-C[O-N(CF_3)_2]=N-CF_3$ and $CF_3-N=CF-O-N(CF_3)_2$ as major products, possibly via a series of elimination-addition reactions involving mercury compounds.

Use of the mercurial $[(CF_3)_2N-O]_2Hg$ or the hydroxylamine $(CF_3)_2N-OH$ (as its alkalimetal salts or adducts with potassium or caesium fluoride) to introduce the $(CF_3)_2N-O$ group into organic, organometallic, or inorganic molecules via halogen exchange reactions has been well exemplified¹. We have extended the method to perfluoroimines.



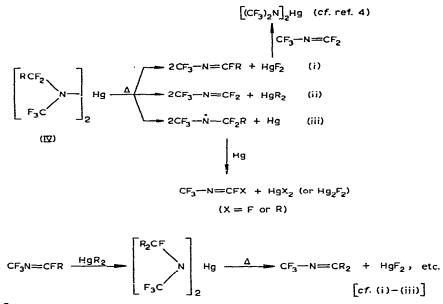
The work stemmed from the discovery² that treatment of the perfluoroimine $\overline{CF_2-O-CF_2-CF_2-N=CF}$ with the novel mercurial (I)* at room temperature resulted in formation of compound (II). Subsequently, reaction of bis[bis(trifluoromethyl)aminooxy] mercury with $\overline{CF_2-(CF_2)_3-N=CF}$ was shown to give (III), which can also be obtained by treatment of the imine with the sodium salt $(CF_3)_2N-O^-Na^+$ or with a $(CF_3)_2N-OH-CsF$ adduct (see Scheme 1).

^{*} Prepared from perfluoromorpholine-N-oxyl³ and mercury at room temperature.

J. Organometal. Chem., 43 (1972)

PRELIMINARY COMMUNICATION

Scheme 1


Detailed examination of the reaction between the acyclic compound $CF_3-N=CF_2$ and bis[bis(trifluoromethyl)aminooxy] mercury at 0° has revealed that a solid adduct forms initially; this adduct has been assigned the structure $\{ [(CF_3)_2N-O-CF_2](CF_3)N \}_2 Hg (IV)$ on the basis of elemental analysis, ¹⁹F NMR investigations, and the following conversions:

$$\{[(CF_{3})_{2}N-O-CF_{2}](CF_{3})N\}_{2}Hg \xrightarrow{Cl_{2}, CFCl_{3}}{21^{\circ}} HgCl_{2} + (CF_{3})_{2}N-O-CF_{2}-NCl-CF_{3} (84\%)$$
(IV)
$$HCl, 21^{\circ}$$

$$Cl_{2} + (CF_{3})_{2}N-O-CF_{2}-NH-CF_{3} (95\%)$$
(IV)

Thermal decomposition of the mercurial (IV) at $45-100^{\circ}$ yields a complex mixture containing the compounds $CF_3 - N=C[O-N(CF_3)_2] - O-C[O-N(CF_3)_2] = N-CF_3$ (V) (59%), $CF_3 - N=CF-O-N(CF_3)_2$ (9%), $CF_3 - N=C[O-N(CF_3)_2]_2$ (traces), $[(CF_3)_2N]_2$ Hg, $(CF_3)_2N-O$, $CF_3 - N=CF_2$, $CF_3 - NCO$, and Hg_2F_2 . The new imine $CF_3 - N=CF-O-N(CF_3)_2$ can also be obtained (31% yield), together with $(CF_3)_2N-O-CF_2 - N=CF-O-N(CF_3)_2$ (22%) and $CF_3 - NH-CF_2 - O-N(CF_3)_2$ (26%), by treatment of $CF_3 - N=CF_2$ with a ca. 2.5/1 (molar) adduct of N,N-bis (trifluoromethyl) hydroxylamine with caesium fluoride at room temperature. Possible decomposition modes for the mercurial (IV) are shown in Scheme 2 [R represents the $(CF_3)_2N-O$ group]; at present the precise pathway leading to the formation of product (V) is obscure.

J. Organometal. Chem., 43 (1972)

Scheme 2

REFERENCES

- 1 For reviews see: D.P. Babb and J.M. Shreeve, Intra-Science Chemistry Reports, 5 (1971) 55; R.E. Banks and M.G. Barlow, Fluorocarbon and Related Chemistry, Vol. 1, The Chemical Society, London, 1971; H.J. Emeléus, Record of Chemical Progress, 32 (1971) 135.
- 2 R.E. Banks and G.F. Smith, unpublished work.
- 3 R.E. Banks, A.J. Parker, M.J. Sharpe and G.F. Smith, J. Chem. Soc. Perkin Trans. I, (1972) in press.
- 4 J.A. Young, S.N. Tsoukalas and R. Dresdner, J. Amer. Chem. Soc., 80 (1958) 3604.

J. Organometal. Chem., 43 (1972)